
Achieving Critical System Survivability through
Software Architectures

John C. Knight and Elisabeth A. Strunk

Department of Computer Science
University of Virginia

151, Engineer’s Way, P.O. Box 400740
Charlottesville, VA 22904-4740, USA

(strunk|knight)@cs.virginia.edu
Abstract. Software-intensive systems often exhibit dimensions in size and
complexity that exceed the scope of comprehension of system designers and
analysts. With this complexity comes the potential for undetected errors in the
system. While software often causes or exacerbates this problem, its form can be
exploited to ameliorate the difficulty in what is referred to as a survivability
architecture. In a system with a survivability architecture, under adverse
conditions such as system damage or software failures, some desirable function
will be eliminated but critical services will be retained. Making a system
survivable rather than highly reliable or highly available has many advantages,
including overall system simplification and reduced demands on assurance
technology. In this paper, we explore the motivation for survivability, how it
might be used, what the concept means in a precise and testable sense, and how
it is being implemented in two very different application areas.

1 Introduction
Sophisticated hardware systems have been providing dependable service in many
important application domains for some time. Systems such as electro-mechanical rail-
way signals and aircraft hydro-mechanical controls are safety critical, and many strate-
gies for achieving and analyzing dependability properties in these systems have been
developed. Introducing software-intensive components into engineered systems, how-
ever, adds extra dimensions in size and complexity. Combining powerful computation
facilities with high-speed digital communications can lead to systems that are thou-
sands of times more complex than would normally be considered in a hardware sys-
tem, such as the electronic funds transfer system within the financial network or the
supervisory and control mechanisms within the electric power grid. Such systems are
referred to as critical infrastructure systems because of the very high dependence that
society now has on them.

Software also enables function to be implemented that would be impractical to
implement in hardware. In safety-critical embedded systems, important facilities—
including many that enhance safety—depend on complex software systems for correct
operation. An example of this is stability augmentation in aircraft flight-control, where
the digital system calculates a stream of small adjustments that must be made to con-
trol surfaces in addition to the pilot’s commands.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Achieving Critical System Survivability through Software Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Both critical infrastructure systems and safety-critical embedded systems can
quickly exceed not only the scope of current approaches to analysis but also the com-
prehension capability of even talented, experienced system designers and analysts.
When this happens, the potential for introducing undetected errors into the system is
greatly increased. While software function causes or exacerbates some of the difficul-
ties in system design, its form can be exploited to ameliorate them in what is referred
to as a survivability architecture. In a system with a survivability architecture (referred
to as a survivable system), the full set of system functions, though highly desirable,
will not always be provided and need not be provided in order to prevent a catastrophic
failure. Under certain adverse conditions that preclude the provision of total function-
ality, the system can offer an alternative service. This alternative service provides crit-
ical system functions, sacrificing some of the preferred service to ensure a level of
continued operation that is considered acceptable even though it is not optimal.

Requiring that a system be survivable rather than reliable provides two major
advantages. First, the amount of hardware replication required to meet hardware
dependability goals can be reduced by architecting the system to allow and account for
some unmasked failures; this confers considerable cost savings, particularly in large
systems. Second, assurance of correct software function can be limited to the function
whose correctness is crucial. Certain software faults can be tolerated by transitioning
to providing only the crucial functionality, and the more limited size of the crucial
functionality gives designers and analysts a much better chance of being able to cope
with the complexity of the system.

In this paper, we examine the characteristics and dependability requirements of
critical infrastructure and embedded systems. With these requirements in mind, we
present the detailed definition of survivability and show how the definition can be
applied. We then give examples of survivable systems and discuss the implementation
of survivability using survivability architectures for both types of system.

2 Types of System

2.1 Critical Information Systems
Powerful information systems have been introduced into critical infrastructure applica-
tions as the cost of computing hardware has dropped and the availability of sophisti-
cated software has increased [18]. Massive computerization has enabled efficiencies
through tightened coupling of production and distribution processes. Just-in-time
delivery of automotive parts by rail, for example, has enabled dramatic inventory
reductions. Some forms of damage to these systems have no external effect because of
appropriate redundancy; mirrored disks, for example, mask the effect of disk failure.
But in other cases, the effects of damage will be so extensive that it will be visible to
the system’s users in the form of a lack of service or reduction in the quality of service.
Events that disrupt critical infrastructure applications are inevitable; in practice, the
continued provision of some form of service is necessary when damage precludes the
provision of full service.

For the developer of a critical information system, knowing what service is
required in the event that full service cannot be provided is very important. The current

notion of dependability for critical information systems does not provide the necessary
concepts of degraded service and the associated spectrum of factors that affect the
choice of degraded service as an explicit requirement. Survivability is the term that has
come into use for this composite form. To provide a basis for a discussion and to moti-
vate the definition, we enumerate the characteristics of infrastructure applications that
affect the notion of survivability. The most important characteristics are:
• System Size. Critical information systems are very large. They are geographically

diverse, topologically complex, and include large numbers of heterogeneous com-
puting, storage and network elements.

• Damage and Repair Sequences. Events that damage a system are not necessarily
independent nor mutually exclusive. A sequence of events might occur over time
in which each event causes more damage. In effect, a bad situation gets progres-
sively worse meaning that a critical infrastructure application might experience
damage while it is in an already damaged state, and that a sequence of partial
repairs might be conducted. A user might experience progressively less service
over time as damage increases and progressively more as repairs are conducted.

• Time-Dependent Damage Effects. The impact of damage tends to increase with
time. The loss associated with brief (seconds or less) interruptions of electric
power, for example, can be mitigated in many cases. A protracted loss (days) is
much more serious, with impact tending to increase monotonically with time.

• Heterogeneous Criticality. The requirements for dependability in infrastructure
systems are considerable but some functions are more important than others and
the importance of some functions often varies with time.

• Complex Operational Environments. The operating environments of critical infra-
structures are of unprecedented complexity. They carry risks of natural, acciden-
tal, and malicious disruptions from a wide variety of sources.

2.2 Safety-Critical Embedded Systems
As with critical infrastructure systems, immense amounts of software have been intro-
duced into safety-critical embedded systems for similar reasons and with similar
results. There has been a shift towards digital implementation of many functions that
used to be electro- or hydro-mechanical (fly by wire, for example), and many new ser-
vice and software-intense safety functions have been introduced (enhanced ground
proximity warning, for example).

All forms of damage to safety-critical systems must be anticipated and considered
in system design and analysis. The emphasis in these systems has always been to mask
the effects of faults, yet that is becoming increasingly difficult as the complexity of the
systems increases. In addition, the overall complexity of the software upon which the
systems rely has long surpassed the point at which comprehensive analysis is possible.
Exploiting the notion of survivability for these systems can reduce system complexity
and limit the amount of software that is crucial to dependable operation.

Mandated dependability requirements are set by regulating agencies such as the
U.S. Federal Aviation Administration (FAA), Food and Drug Administration (FDA),
and Nuclear Regulatory Commission (NRC). The FAA, for example, categorizes air-
craft functionality into three levels of criticality according to the potential severity of

its failure conditions [14]. The most extreme criticality level is “Catastrophic: Failure
conditions which would prevent continued safe flight and landing” [14]. Catastrophic
failure conditions must be “extremely improbable” [14] or “so unlikely that [the failure
condition is] not anticipated to occur during the entire operational life of all airplanes
of one type” [14]. “Extremely improbable” corresponds to a quantitative failure rate of
10-9 failures per hour of operation.

Using survivability in systems of this type enables the extent of the system that is
required to meet this extreme level of dependability to be reduced significantly. As in
the critical infrastructure case, we enumerate the characteristics of safety-critical
embedded systems that affect the notion of survivability. These characteristics are:
• System Timing and Resource Constraints. Embedded systems are often severely

limited in power, cost, space, and weight, and so they are tuned to take the best
possible advantage of their underlying resources.

• System Coupling. System components frequently have a very strong dependence
on one another, and so the state of various system components must be seen indi-
vidually and also as a whole when determining appropriate system behavior.

• Damage and Repair Sequences. Failures can occur in sequence, and while some-
times the system size allows reinitialization, at other times system criticality pre-
cludes any service interruption.

• Heterogeneous Criticality. Criticality of embedded system services also varies
with function and with time. A medical application, for instance, is less dangerous
during surgical planning than during the surgery itself.

• Complex Operational Environments. While the operational environments of
embedded systems are fairly localized, they can still be affected by a variety of
factors. Avionics systems are affected by factors such as weather, altitude, and
geographic location.

3 What Is Survivability?

3.1 Existing Definitions of Survivability
Like many terms used in technologies that have not yet matured, several notions of
survivability have appeared, and a rigorous definition has been presented only
recently. Survivability has roots in other disciplines; for instance, a definition used by
the telecommunications industry is:
Survivability: A property of a system, subsystem, equipment, process, or procedure

that provides a defined degree of assurance that the named entity will continue to
function during and after a natural or man-made disturbance; e.g., nuclear burst.
Note: For a given application, survivability must be qualified by specifying the
range of conditions over which the entity will survive, the minimum acceptable level
or [sic] post-disturbance functionality, and the maximum acceptable outage
duration [46].

The sundry definitions of survivability (see also, for example, [12, 13]) vary consider-
ably in their details, but they share certain essential characteristics. One of these is the
concept of service that is essential to the system. Another is the idea of damage that

can occur; and a third, responding to damage by reducing or changing delivered func-
tion. Further, the definitions used outside of computing introduce the idea of probabil-
ity of service provision as separate from the probabilities included in dependability.

While these definitions offer a firm starting point for a definition, they offer only
an informal view of what survivability means. This view is analogous to the colloquial
view of reliability—that the system rarely or never fails. The formal view of reliability,
on the other hand, states that a system is reliable if it meets or exceeds a particular
probabilistic goal. It is the formal definition that provides criteria for reliability that
can be tested. Likewise, a formal definition for survivability that provides testable cri-
teria is needed. If a system’s survivability characteristics cannot be tested, then system
developers cannot tell whether they have met users’ requirements. The informal defi-
nitions above, for example, do not specify: which functions are essential; under what
fault conditions the essential functions will be provided; or the timing requirements on
transitioning to provide only essential functions.

Knight et al. give a definition based on specification: “A system is survivable if it
complies with its survivability specification” [20]. They draw on the properties men-
tioned above and present a specification structure that tells developers what survivabil-
ity means in an exact and testable way. It is this definition that we characterize and
build on here.

3.2 A More Precise Intuitive Notion
What has been implied so far, but has not been made explicit, is the idea of value pro-
vided by a system to its users. In the critical infrastructure case, this value is essentially
an aggregate over time; provision of electric service, for instance, is not critical at a
single point in time or even for a short length of time, but the service is crucial over the
long term. In contrast, in many embedded systems provision of service at a particular
point in time is paramount; a nuclear shutdown system, for example, is of no use if it is
operational continuously only until it is called upon.

The core of the survivability concept is that value is not a Boolean variable. A sys-
tem is not constrained to provide service or not; it can provide service whose value to
the user is less than that of the system’s standard service, but still enough to meet criti-
cal user requirements. For an aircraft, such service might be basic control surface actu-
ation without enhanced fly-by-wire comfort and efficiency algorithms.

The general idea of survivability is that a system will “survive” (i.e., continue
some operation), even in the event of damage. The operation it maintains may not be
its complete functionality, or it might have different dependability properties, but it
will be some useful functionality that provides value to the users of the system, possi-
bly including the prevention of catastrophic results due to the system’s failure. Such a
strategy is used extensively in industrial practice, but it does not rest on a rigorous
mathematical foundation and so the properties of such a system are not guaranteed.

One might want to pursue survivability of a system for two reasons. First, while
many services that critical systems provide are helpful or convenient, not all of them
are necessary. Dependability guarantees on the noncrucial services can be extremely
expensive to implement, particularly in the case of infrastructure systems where thou-
sands of nodes would have to be replicated were the system engineered to provide all

services with high dependability. In this case, survivability increases value delivered to
the user because it decreases the cost of the services that are rendered.

Second, it might be the case that a system is so complex that there is no way to
determine with sufficient confidence that the system meets its dependability goals.
Cost can influence a decision to use survivability in this sense as well—sufficient
assurance, if possible, could be extremely costly—but even more difficult is the ques-
tion of validation. Validation is an informal activity [42], and must ultimately be per-
formed by humans. The larger and more complex the system, the more difficulty
humans have in determining whether it will meet their informal notion of what it
should accomplish. If the system is survivable, human oversight need only ensure to
ultradependable levels the crucial function and the transition mechanism, a simpler
task than ensuring ultradependability of the entire system.

We now describe the different facets of the survivability concept that lead into a
more rigorous definition:
• Acceptable services. A simple strategy for specifying a survivable subsystem is to

define what constitutes the system’s desired functionality and what constitutes its
crucial functionality. The crucial functionality can then be ultradependable and the
desired functionality fail-stop in the sense of Schlichting and Schneider [37]. This
strategy is oversimplistic, however, for three reasons. First, the user is likely to
expect some minimum probability that the full function is provided. Operating
exclusively in backup mode is almost certain to be unacceptable. Second, there
can be more than two major classes of function. If the system must degrade its ser-
vices, some services are likely to be more valuable than others even if they are not
essential, and the subsystem should continue to provide those services if possible.
Third, the functionality that is determined to be crucial by domain experts will
usually depend upon operating circumstances. As an example, consider an auto-
matic landing system. It could halt and simply alert pilots of its failure if it were
not in use (i.e., in standby mode), but if it were controlling an aircraft it would
have to ensure that pilots had time to gain control of the situation before halting.
The set of acceptable services contains those services which provide the best pos-
sible value to the user under adverse circumstances, and which take account of the
three factors above.

• Service value. If we are to base design decisions on delivered value, it is important
to have a precise characterization of that value. The metrics by which delivered
value can be measured vary among applications, and can become incredibly com-
plex. Absolute value is not important, however, because the purpose of a value
metric is to decide what will provide the most benefit under specific circum-
stances: a quality that can be specified with relative values among the set of
acceptable services. The relative value provided by a service can change under
varying operational conditions, but for a system with a small number of separate
services and a small number of salient environmental characteristics, the specifi-
cation of relative service values can be done simply in a tabular form without hav-
ing to conduct a detailed utility analysis.

• Service transitions. The system will provide only one member of the set of accept-
able services at a time. Under normal circumstances, that member will be the pre-

ferred service which includes all desired functionality. If the preferred service can
no longer be maintained, the system must transition to a different acceptable ser-
vice. Which service it transitions to will depend on which services can still be pro-
vided and the operational conditions at the time of the transition. The set of valid
transitions defines the specifications to which the system can transition from a
particular specification. When a reconfiguration occurs, the service with the high-
est relative service value in that set for the prevailing operational conditions will
be chosen. Transitions also might be triggered by a change in operational condi-
tions as well as some form of damage if the system is not delivering its preferred
service.

• Operating environment. Since different services provide different relative values
under different operating conditions, the characteristics of the operating environ-
ment that affect relative service values must be enumerated, so that the environ-
mental state can be determined and used in calculating the most appropriate
transition to take. As an example, note that time of day has a serious impact on
usage patterns of infrastructure services and can affect the risks associated with
critical embedded systems such as aircraft and automobiles.

• Service probabilities. Users will demand that they have more than strictly crucial
operational capability the vast majority of the time. Simply listing a set of accept-
able services, then, is insufficient because that would imply that implementing
only the basic service fulfills the specification. Rather, a set of minimal probabili-
ties on value of delivered service are required. These probabilities are require-
ments on a system’s meeting the dependability requirements of the operational
specification. In other words, if the system were operating under the specification
S1, then the probability would be that S1’s dependability requirements were met.
This is not the same as strict composition of dependability and survivability prob-
abilities, because if the survivability probability is not met, then the system will
transition to another specification with a new set of dependability probabilities.
It might be the case that specification probabilities should be grouped. For exam-
ple, if a system can transition from S1 to either S2 or S3 depending on operating
conditions, and (S2 OR S3) provides some coherent level of service, then the
desired probability would be on (S2 OR S3) rather than the specifications individ-
ually. Generally, the same probability might be assigned to both S2 and S3 so that
that probability would then hold over (S2 OR S3). Specifying that the probability
hold over the disjunction, however, leaves more slack in the implementation of the
system as well as being more intuitive.

3.3 Defining Survivability
Now that we have presented an informal explanation of the meaning and characteris-
tics of survivability, we summarize the definition [20]. The definition is phrased as a
specification structure; a system specification that has each of these elements is
defined to be a survivability specification, and a system built to that specification has a
survivability architecture. Such a specification contains six elements:

S: the set of functional specifications of the system. This set includes the preferred
specification defining full functionality. It also includes alternative specifications
representing forms of service that are acceptable under certain adverse conditions
(such as failure of one or more system components). Each member of S is a full
specification, including dependability requirements such as availability and reli-
ability for that specification.

E: the set of characteristics of the operating environment that are not direct inputs to
the system, but affect which form of service (member of S) will provide the most
value to the user. Each characteristic in E will have a range or set of possible val-
ues; these also must be listed.

D: the states of E that the system might encounter. This is essentially the set of all
modes (i.e., collection of states) the environment can be in at any particular time.
Each element of D is some predicate on the environment. D will not necessarily be
equal to the set of combinations of all values of elements in E since some combi-
nations might be contradictory. Including D as a specific member allows com-
pleteness checks across environmental modes.

V: the matrix of relative values each specification provides. Each value will be
affected both by the functionality of the specification and the environmental con-
ditions for which that specification is appropriate. Quantifying these values is
impossible, but using relative values gives the ordering needed to select a service
based on prevailing conditions.

T: the valid transitions from one functional specification to another. Each member
of T includes the specification from which the transition originates (source speci-
fication), the specification in which the transition ends (target specification), and a
member of D defining the environmental conditions under which that transition
may occur (the transition guard). The guard enables a specifier to define which
transitions are valid under certain circumstances, and the developer can then use V
to decide which target specification is most valuable under those conditions.

In information systems this is sufficient because while there will be some
approximate time constraint on the transition’s occurrence, it is unlikely to be a
very tight time bound. In embedded systems, on the other hand, the time required
to transition often will be an integral part of the transition specification, and some
global state invariant might need to hold during the course of the transition. Thus
T has two optional members: the transition time, the maximum allowable time for
a particular transition during which the system may be noncompliant with all
members of S; and the transition invariant, which may not be violated at any point
in which the system is noncompliant with all members of S.

P: the set of probabilities on combinations of specifications. Each member of P will
be a set of specifications containing one or more elements that is mapped to a
probability. The specifications in each set provide approximately the same level of
functionality, under different environmental conditions. The probability is the
probability of a failure in the system when the system is in compliance with one of
the specifications (or the single specification, if there is only one in the set for that

probability). Each probability is a minimum; for example, a failure of the primary
specification might in reality be extremely improbable, so that the system never
transitions to another specification. The probabilities are set by the systems own-
ers to document the required service guarantees and they serve to provide a lower-
bound guarantee of system operation.

4 System Examples

4.1 An Example of Survivability in Critical Information Systems
To illustrate the definition, we present an example based on a hypothetical financial
payment system. We assume a hierarchical network topology in which there are a large
number of nodes associated with branch banks (small retail institutions), a smaller
number of money-center banks that are the primary operations centers for major retail
banking companies, and a small set of nodes that represent the Federal Reserve Bank.
Examples of identified hazards to the system include major hardware disruption in
which communications or server machines become non-operational; coordinated secu-
rity attacks in which multiple commercial bank regional processing centers are pene-
trated; and regional power failure in which either many branch banks are disabled or
several money-center banks are disabled.

For this example, we assume several forms of tolerable service for the payment
system (shown in Fig. 1): (S0) Preferred, including electronic funds transfers, check
processing, support for financial markets such as stocks and bonds, and international
funds transfers; (S1) Industry/Government, which limits service to transfer of large
sums among major industrial and government clients only; (S2) Financial Markets,
which defines service for all the major financial markets but no other client organiza-
tions; (S3) Government Bonds, which defines service for processing of sales and
redemptions of government bonds only and only by major corporate clients; and (S4)
Foreign Transfers, in which transfers of foreign currency into or out of the country are
the only available service.

To decide upon the relative value seen by users of the payment system associated
with the services in this example (V in Fig. 1), we note: (1) that settlement by the clear-
ing houses and the Federal Reserve Bank occurs during the late afternoon; (2) domes-
tic markets are closed at night; and (3) stock, bond, and commodity markets must be
accommodated when trading volumes are exceptionally and unexpectedly high. There
is little value to providing processing service to domestic financial markets overnight,
for example, and thus international transfers of funds have higher value. Similarly,
extreme volume in domestic financial markets leads to a high demand on the financial
payment system and this demand must be met if possible. Finally, during times of
political crisis, sentiment turns away from most traditional financial instruments and
government bonds become heavily sought after. Thus, during such times, the ability to
maintain a market in government bonds is crucial. The relevant members of E, then,
are time of day, trading volume, and political climate. D is the powerset of members of
E, except that: (1) all states where the political climate is unstable are grouped
together, since their values are the same; and (2) high trading volume cannot occur
during late afternoon or at night. P for this specification is the set of individual specifi-

cation probabilities; composing specification probabilities does not make sense in this
situation.

In our example, consider first the occurrence of a fault with a major file server that
occurs during the middle of a normal market day (i.e., system state d1) and which can-
not be masked. To meet its survivability specification, the options that the system has
are to transition to providing either service S1, S4, or S2, (see Fig. 1) and the maximum
relative value to the user (from the V table indexed by the current conditions d1) would
be in service S1 in this case. Were this to occur during the night, the transition would
be to service S4 because the current conditions would be d4. Now suppose that while
the server is down, a coordinated security attack is launched against the system (a bad
situation getting worse). In that case, the response to the attack might be to shut down
as much of the system as possible. The system would transition to service S3 since that
would permit the best support in the event that the situation developed into a govern-
mental crisis.

S3
Government

Bonds

S1
Industry/

Government

S2
Financial
Markets

V

d1 d2 d3 d4 d5

S0 6 6 6 6 6

S1 5 4 3 - -

S2 4 5 5 - 4

S3 - - - - 5

S4 - - 2 5 -

E
e1: time of day =

{business hours, late afternoon, night}
e2: trading volume = {normal, high}

e3: political climate = {stable, unstable}
P

p0: .990
p1: .997
p2: .996
p3: .998
p4: .999

NOT d4

d5

Fig. 1. Hypothetical Financial Payment System Survivability Specification

D
d1: business hours, normal , stable

d2: business hours, high , stable
d3: late afternoon, normal , stable

d4: night, normal , stable
d5: unstable

S4
Foreign

Transfers

d5

d5

d5

d1 Ú d2 Ú d3

d3 Ú d4

d1 Ú d2 Ú d3
d1 Ú d2 Ú d3

d1 Ú d2 Ú d3

NOT d4

NOT d4

NOT d4

d3 Ú d4

d3 Ú d4

d3 Ú d4

S0
Primary

4.2 An Example of Survivability in Embedded Systems
As an illustration of how survivability might be applied to a safety-critical system,
consider a hypothetical automatic landing system for a commercial aircraft. Assume
four functional specifications, as shown in Fig. 2. The primary specification (S0) will
have all of the functionality the pilot desires for the system. The consequences of any
failures will be minor because, if they have the potential to be more severe, the system
can transition to one of the other three specifications. Therefore, using the FAA’s criti-
cality levels (see section 2.2), any failure in the primary specification may be “proba-
ble” provided that failure of a transition to another specification is “extremely
improbable”.

The first alternative specification (S1) will have much of the functionality desired
by the user, but some desirable yet unnecessary functionality removed. For example,
the system might have to follow the step-down altitude clearances for the runway to
descend at the proper rate rather than using the glideslope. All failures in this specifi-
cation must be “improbable”; its functionality is important enough that frequent inter-
ruptions could have adverse consequences. However, provided that failure of a
transition to another specification is “extremely improbable”, none of it need be

S0
Primary

S3
Core: execute

missed approach

S1
Alternative:
step-down
clearances

S2
Core: disconnect

and alert pilot

V

d1 d2 d3 d4

S0 5 5 5 5

S1 4 4 4 4

S2 2 2 2 2

S3 3 1 3 1

E
e1: glideslope operational =

{operational, nonoperational}
e2: decision height =

{above height, below height}

P
p1: 10-4 failures/hr
p2: 10-6 failures/hr
p3: 10-9 failures/hr

p3

p2

p1

d1 Ú d2
d3 Ú d4d3 Ú d4

d1 Ú d2

d4

d1 Ú d3
d2

d1 Ú d2

d2 Ú d4 d1 Ú d3

Fig. 2. Hypothetical ALS Survivability Specification

D
d1: operational, above height
d2: operational, below height

d3: nonoperational, above height
d4: nonoperational, below height

“extremely improbable” because any failures with potentially catastrophic conse-
quences will cause a transition to a different alternative specification (S2 or S3).

S2 and S3 are the specifications that have very high dependability requirements.
We will let S2 be the specification requiring that the system disconnect and alert the
pilot while remaining on course if the system fails and S3 be the specification requiring
the aircraft to execute a missed approach and alert the pilot on system failure. They
contain the minimum functionality necessary to maintain safe operation of the system.
Any non-masked failure of either of these specifications—such as failure to alert the
pilot that the system has malfunctioned and the pilot is now in control—must be
“extremely improbable”, as the specifications are designed to include only the system
functionality whose failure could have catastrophic consequences.

Whether the system transitions to S2 or S3 on a failure of S1 depends on whether
the aircraft is above or below decision height at the time of the transition, based on the
assumption that presenting the possibility of a go-around is more valuable under those
circumstances. The new probability requirement, then, would be that a failure of S2
above decision height is “extremely improbable”, and a failure of S3 below decision
height is “extremely improbable”. In some cases the environmental conditions might
change, and a transition between specifications appropriate to different conditions
must occur in order to keep the system operating with its optimal functionality.

5 Implementation of Survivable Systems

5.1 The Role of Fault Tolerance
Survivability is a system property that can be required in exactly the same way that the
other facets of dependability can be required. There is no presumption about how sur-
vivability will be achieved in the notion of survivability itself—that is a system design
and assessment issue. However, the probabilities associated with each of the tolerable
forms of service are important design constraints since they will determine which
design choices are adequate and which are not.

A practical survivability specification will have achievable probabilities and care-
fully selected functionality specifications. Thus, in such a system, the effects of dam-
age will not be masked necessarily; and, provided the probabilities are met in practice,
degraded or alternative service will occur. In effect, this implies that the survivability
requirement will be achieved by the fault-tolerance mechanism, i.e., the system will
have a fault-tolerant design. Note, however, that the N different functions in the surviv-
ability specification do not correspond to functions that can be achieved with the
resources that remain after N different faults. The N functions in the survivability spec-
ification are defined by application engineers to meet application needs and bear no
prescribed relationship to the effects of faults. Many different faults might result in the
same degraded or alternative application service. The role of a survivability architec-
ture is to provide the necessary system-level framework to implement the fault toler-
ance necessary to meet the system’s survivability goal. In the next two sections, we
discuss two examples.

5.2 The Willow Reactive Mechanism
The fundamental structure of the Willow architecture [19] is a set of control loops each
of which has monitoring, diagnosis, synthesis, coordination, and response
components [45]. These components provide application-level fault tolerance. Moni-
toring and diagnosis provide error detection and synthesis; coordination and response
provide error recovery. The overall structure is depicted in Fig. 3. The control loops
begin with a shared sensing capability shown within the application nodes. Sensors
can include reports from application software, application heartbeat monitors, intru-
sion detection alarms, or any other means of measuring actual application properties.

From sensing events, independent diagnosis and synthesis components build
models of application state and determine required application state changes. Synthe-
sis components issue their intended application changes as workflow requests. These
are coordinated by the workflow and resource managers to ensure that changes occur
correctly and smoothly within the application. When workflows are allowed to acti-
vate, workflow events are received by the application nodes and result in local system
state changes. Actuation completes the control loop cycle.

As an example of the way in which the Willow reactive mechanism might be used,
consider the hypothetical financial system introduced in section 4.1. The system might
consist of several hundred servers of different types and tens of thousands of clients all
communicating via a private network. Such a system provides services that are critical
to several communities, and both security and availability are important properties.
The Willow reactive mechanism could be used to deal with a variety of faults, both
malicious and non-malicious, that might affect the system. A control loop could be
deployed to deal with node failures that might occur because of hardware or software
failures. A second control loop could be deployed to deal with coordinated security
attacks. We discuss how these loops might work in the remainder of this section.

Fig. 3. The Willow Reactive System.

MonitorMonitorMonitor

Diagnose
Synthesize

Critical Infrastructure Application

RespondRespondRespond

Control Loops

Sensors Within
Application

Nodes

Coordination

Actuators Within
Application

Nodes

Dealing with complex faults
The reactive controller is a fully automatic structure that is organized as a set of finite
state machines. The detection of the erroneous state associated with a fault (i.e., error
detection) is carried out by a state machine because an erroneous state is just an appli-
cation system state of interest. As the effects of a fault manifest themselves, the state
changes. The changes become input to the state machine in the form of events, and the
state machine signals an error if it enters a state designated as erroneous. The various
states of interest are described using predicates on sets that define part of the overall
state. The general form for the specification of an erroneous state, therefore, is a col-
lection of sets and predicates. The sets contain the application objects of concern, and
the predicates range over those sets to define states either for which action needs to be
taken or which could lead to states for which action needs to be taken.

In the financial system example, events occurring at the level of individual servers
or clients would be sent to the diagnosis and synthesis element of the Willow system
where they would be input to a finite-state machine at what amounts to the lowest level
of the system. This is adequate, for example, for a fault such as one causing commer-
cial power to be lost. Dealing with such a fault might require no action if a single
server or some small number of clients is affected because local equipment can proba-
bly cope with the situation. If a serious power failure affects a complete critical data
center along with its backups, then the system might need to take some action. The
action taken would be determined by the system’s survivability specification as dis-
cussed in section 4.1. Recognizing the problem might proceed as follows. As node
power failures are reported so a predefined set maintained by the diagnosis element,
say nodes_without_power, is modified. When its cardinality passes a prescribed
threshold, the recognizer moves to an error state. Once the recognizer is in the error
state, the response mechanism would generate the appropriate workflows and individ-
ual nodes throughout the system would undertake whatever actions were defined by
the workflows.

Sometimes, damage to a system is more complex. For example, a set of financial
system nodes losing power in the West is the result of one fault, a set losing power in
the East is the result of a second, but both occurring in close temporal proximity might
have to be defined as a separate, third fault of much more significance. Such a fault
might indicate a coordinated terrorist attack or some form of common-mode hardware
or software failure. No matter what the cause, such a situation almost certainly requires
a far more extensive response. We refer to such a circumstance as a fault hierarchy. A
fault hierarchy is dealt with by a corresponding hierarchy of finite-state machines.
Compound events can be passed up (and down) this hierarchy, so that a collection of
local events can be recognized at the regional level as a regional event, regional events
can be passed up further to recognize national events, and so on.

A coordinated security attack launched against the example financial system
might include a combination of intrusions through various access points by several
adversaries working at different locations, targeted denial-of-service attacks, and
exploitation of previously unknown software vulnerabilities. Detection of such a situa-
tion requires that individual nodes recognize the circumstances of an attack, groups of
nodes collect events from multiple low-level nodes to recognize a wide-area problem,

and the high-level error-detection mechanism recognize the variety of simultaneous
wide-area problems as a coordinated attack.

Provided sensor data was available from elements such as host intrusion-detection
systems, network traffic monitors, and liveness monitors, a scenario such as this could
generate an appropriate set of events as the different elements of the attack took place.
A finite-state-machine hierarchy that might be used in such circumstances is shown in
Fig. 4. As sensor events arrive from intrusion detection systems, an initial indication of
the severity of the situation would be created. Local error detection might show that
multiple clients were reporting intrusions. Each one might not be serious in its own
right, but the temporal proximity of several would be a concern. The finite state
machines receiving these intrusion events might not act on them other than to shut
down the nodes reporting intrusions. Instead, they would generate compound events
that would be sent to finite machines detecting regional security problems.

Regional error detection might determine that action needed to be taken after sev-
eral local error detectors signalled a problem by forwarding a compound event. The
action taken at the regional level might be to immediately switch all nodes in the
region to a higher security level and limit service. If network traffic monitors then
detected traffic patterns that were indicative of a denial of service attack, the error
detection mechanism could trigger a national response.

Communication
The communication challenges presented by the Willow reactive system are consider-
able because of the scale of the networked applications that it seeks to address. The
greatest challenge comes from the need to send reconfiguration commands to sets of
nodes (those that have to act in the face of damage or an attack) where the relevant set
is determined by analysis of the state.

Fig. 4. Recognizing a Fault Hierarchy

Events From Sensors

National Error
Detection

Regional Error
Detection

Local Error
Detection

Compound Events

Finite State Machine

Workflows

The obvious way to approach such a requirement is for the Willow reactive sys-
tem to maintain a central database with details of all the nodes in the system—how
they are configured, what software they are running, their network addresses, and so
on. This is completely infeasible for systems of the type we address. With hundreds of
thousands of nodes, the size of the database would be prohibitive and it would con-
stantly be in danger of being out of date—network changes would not be reflected in
the database until some time after they occurred.

To send reconfiguration commands, the Willow system uses a novel communica-
tions approach called selective notification, an event communication mechanism com-
bining content-based addressing, intentional addressing, and sender qualification in a
unified structure for the delivery of events [33]. It has three primary components: (1)
symmetric decoupled communication that combines content, sender, and receiver
addressing in a single property-based addressing language; (2) descriptive communica-
tion policies in which communication relationships are defined at the level of policies
constraining properties of objects relevant to communication; and (3) simultaneous
addressing in which content-based, intentional, and sender-qualified addresses are
applied simultaneously in determining the delivery of each event.

Returning to the example security attack on the hypothetical financial system, the
actions needed for defense as the attack develops would be communicated to the nodes
that need to take action by selective notification. The regional response of shutting
down all nodes signalling intrusions and switching all other nodes in the affected
region to a higher security level would be effected by two uses of selective notifica-
tion. In the first, a command to shut down would be transmitted to “All Nodes In
Region X With Triggered Intrusion Detection Alarms” where “X” is identity of the
affected region. In the second, a command to change security parameters would be
sent to “All Operating Nodes In Region X”. The phrases in quotations are the
addresses used by selective notification. By selecting nodes based on properties, only
essential network state information needs to be maintained by the Willow system.

The Willow reactive system has been evaluated as a means of defending against
fast-moving worms. Using a single control loop implementation, worm propagation
has been studied by simulation and the effect of a Willow-based defense system
assessed. The details of that study can be found in the work of Scandariato and
Knight [36].

Dealing with conflicting goals
The Willow reactive system consists of multiple asynchronous control loops, and each
could initiate reconfiguration at any time. Clearly, this means that either all but one has
to be suspended or there has to be a determination that they do not interfere. In the
financial system example, we hypothesized that there might be two control loops and it
is clear that they could easily conflict. If one were reconfiguring the information sys-
tem to deal with a common-mode software failure when a security attack was initiated,
it would be essential to take whatever actions were deemed necessary to counter the
effects of the security attack. Reconfigurations underway might have to be suspended
or even reversed. In such a situation, unless some sort of comprehensive control is
exercised, the system can quickly degenerate into an inconsistent state.

One approach would be to have each source make its own determination of what it
should do. The complexity of this approach makes it infeasible. An implementation
would have to cope with on-the-fly determination of state and, since initiation is asyn-
chronous, that determination would require resource locking and synchronization
across the network.

The approach taken in Willow is to route all requests for reconfiguration through a
resource manager/priority enforcer. The prototype implementation uses predefined pri-
oritization of reconfiguration requests and dynamic resource management to determine
an appropriate execution order for reconfiguration requests. It does this using a distrib-
uted workflow model that represents formally the intentions of a reconfiguration
request, the temporal ordering required in its operation, and its resource usage. Com-
bined with a specified resource model, this information is the input to a distributed
scheduling algorithm that produces and then executes a partial order for all reconfigu-
ration tasks in the network.

Scheduling is preemptive, allowing incoming tasks to usurp resources from others
if necessary so that more important activities can override less important ones. Trans-
actional semantics allow preempted or failed activities to support rollback or failure,
depending on the capabilities of the actuators that effect the reconfiguration.

5.3 Embedded System Reconfiguration
Turning now to embedded systems, the notion of reconfiguration to deal with faults
has been used extensively in safety-critical and mission-critical systems. For example,
the Boeing 777 uses a strategy similar to that advocated by Sha’s Simplex architecture
in which the primary flight computer contains two sets of control laws: the primary
control laws of the 777 and the extensively tested control laws of the 747 as a
backup [38]. The Airbus A330 and A340 employ a similar strategy [41] as have
embedded systems in other transportation, medical, and similar domains. Existing
approaches to reconfigurable architectures are, however, ad hoc; although the system
goals are achieved, the result is inflexible and not reusable. Another important issue is
the difficulty of achieving the necessary level of assurance in a system that has the
capability of reconfiguring.

A prototype experimental survivability architecture for embedded systems
designed to deal with these issues is illustrated in Fig. 5. In this architecture, these sub-
systems interface with the Subsystem Control Reconfiguration Analysis and Manage-
ment (SCRAM) middleware. The SCRAM layer interfaces with the host operating
system and various error-detection mechanisms deployed throughout the system.

The goal of this architecture is to permit the entire system to be survivable and
consequently to provide the service required for safety (but not necessarily any other
services) with a very high level of assurance. System survivability is achieved: (a) by
ensuring that subsystems possess certain crucial properties; (b) by precise composition
of the properties of the individual subsystems; (c) by controlled reconfiguration of sub-
systems if they experience local damage; and (d) by controlled reconfiguration at the
system level if necessary.

Each subsystem is constructed individually to be a survivable entity and to pro-
vide a set of acceptable services in the sense of the survivability framework described

above. During operation, the SCRAM layer is responsible for reconfiguring the system
so as to ensure the continued provision of essential aspects of the system’s functional-
ity. Reconfiguration is initiated by any sequence of events that either preclude the sys-
tem from providing full functionality or indicate that providing full functionality
would be unwise. An example of the former would be the defective operation or loss
of any major system component, and an example of the latter would be an anticipated
loss of power or communications in the near future. These events are detected by vari-
ous means, including checking mechanisms within the different software subsystems
themselves.

Protection Shells and Fail-Stop Software
The argument for the efficacy of survivability in embedded systems is based on the
notion that in practice, many functions in safety-critical systems do not need to be
ultradependable, they need to be fail-stop [37]. In other words, it is sufficient for the
function to either work correctly or to stop and signal that it has failed. As an example,
consider the hypothetical automatic landing system (ALS) from Section 4.2. Although
part of the overall avionics system, the ALS could be defective during cruise without
posing a serious threat to the aircraft. Provided the ALS either works correctly or stops
and alerts the pilot, the aircraft is unlikely to come to harm.

The software analog of fail-stop machines is the concept of safe programming
introduced by Anderson and Witty [2]. The concept of safe programming is (in part) to

Subsystem Control Reconfiguration Analysis and Management Middleware

Subsystem 1

S1,k

S1,1

Fig. 5. Survivable Embedded System Architecture Overview

Hardware fault
signals

Specifications

Si,1 :desired functionality
Si,2 :intermediate functionality

....
Si,m:crucial functionality

Operating System

Computing Platform - Processing Units, Communications Facilities, Network Support,
Sensors, Etc.

Software fault
signals Reconfiguration

signals
Reconfiguration

signals

System
calls

System
calls

Subsystem N

SN,k

SN,1

modify the postcondition for a program by adding an additional clause stating that
stopping without modifying the state and signalling failure is an acceptable result of
execution. A safe program in this sense is one that satisfies its (modified) postcondi-
tion. The problem of assurance has thus been reduced to one of assuring comprehen-
sive checking of the program’s actions rather than assuring proper overall
functionality.

Related to safe programming, and providing a mechanism for implementing it, is
the idea of a safety kernel. The idea has been studied in various contexts. Knight has
introduced the term protection shell to more accurately describe what a small, simple
policy enforcement mechanism for safety should be. The term “shell” implies that,
rather than basing safety policies on what information can pass to and from the proces-
sor, the policies should be based on what outputs can be returned to the hardware con-
trolled by the application.

Protection shells can be used to implement fail-stop function in survivable sub-
systems. Less critical components can have shells that guarantee the entire piece of
function is fail-stop, while crucial components’ shells can guarantee fail-operational
capability or provide assurance that failures are acceptably improbable. Whichever
capability is needed, the analysis associated with the shell will be much simpler than
that associated with the full system because the shell for each component is much sim-
pler than the component itself and is explicitly designed to facilitate that analysis.

The software subsystems that interact with the SCRAM layer can leverage the
simpler analysis that protection shells afford to achieve the goal of obtaining a high
level of assurance that the subsystem will, in fact, be survivable. Each major software
component in a subsystem will be encapsulated in a shell that is geared to provide
some set of guarantees for each possible operational level (individual specification).
They can then be combined into a survivable subsystem structure using a standard
architecture that provides subsystem reconfiguration and an interface allowing the
SCRAM middleware to control subsystem internal reconfiguration.

Assurance Characteristics of a Reconfigurable System
The mechanism through which embedded system reconfiguration is achieved is com-
plex, and going about its development in an ad hoc way could lead to lower overall
system dependability than would have been exhibited by a system that could not
reconfigure. Furthermore, dependability is a characteristic that typically must be met
with very high assurance, and it cannot be assured without a rigorous characterization
of this assurance.

We have described single-process reconfiguration informally as “the process
through which a system halts operation under its current source specification Si and
begins operation under a different target specification Sj” [43]. From the definition of
survivability, we know that a survivable embedded system has:

• A set S: {S1, S2, ..., Sn} of service specifications of the system
• A set E of possible environmental factors and their values
• The maximum timeTij allowable for reconfiguration
• An invariant Invij that must hold during reconfiguration

Using these concepts, reconfiguration can be defined as the process R for which [43]:

1. R begins at the same time the system is no longer operating under Si
2. R ends at the same time the system becomes compliant with Sj
3. Sj is the proper choice for the target specification at some point during R
4. R takes less than or equal to Tij time units
5. The transition invariant holds during R
6. The precondition for Sj is true at the time R ends
7. The lifetime of R is bounded by any two occurrences of the same specification

This is still an informal characterization of reconfiguration; a more thorough character-
ization upon which a rigorous argument can be built is available elsewhere [43].

Using the Software Architecture to Facilitate Proof
For large, complex systems, showing that an implementation has the characteristics
outlined above can be a daunting task. Building in the potential for arguments of
reconfiguration assurance in a more detailed software architecture can facilitate the
creation of assurance arguments, just as the survivability architecture is designed to
facilitate arguments of overall system dependability.

Software architectures have an advantage over software design in that they are
general enough to be reusable across a number of systems. We argue that if we can
show overall assurance properties of an architecture, we no longer have to show those
assurance properties for each individual system that employs the architecture. Thus,
assurance of such a system is defined as assurance of compliance with the architecture
rather than assurance of overall reconfiguration.

Protection shells are a useful basic component of such an architecture in that they
can export an interface whose properties can be assured by comprehensive checking of
outputs if necessary. In addition to providing such functional properties, shells can be
used to ensure invariants are held by restricting access to the interface. They can
include definitions of preconditions and postconditions of module data, and call mod-
ule functions that ensure preconditions and postconditions are met at appropriate
times. Finally, each interface function of a shell can carry strict timing guarantees of its
operation.

In our architecture, each function in a module interface presents a set of functional
service levels. Reconfiguration to a similar but degraded service is accomplished by
calling degraded versions of the same functions. The modules (and their shells) are
linked through a monitoring layer, the architectural component that knows which
member of S must operate, and passes this information along to the modules hierarchi-
cally to effect reconfiguration of function. Any detected and unmasked fault during
computation of a module function causes control to be returned to the monitoring
layer. The layer then activates the reconfiguration mechanism, which will choose the
target specification, cause the data elements of the individual modules to conform to
the precondition of the target specification, and instruct the monitoring layer to restart
operation under the new specification.

Our architecture is designed to facilitate reconfiguration of a single application. A
more extensive characterization of its structure and applicability is available

elsewhere [43]. We have outlined above how multiple applications can be combined
using the SCRAM layer into an overall reconfigurable system. A similar assurance
structure for the set of interacting systems is currently in development.

6 Related Work
Many concepts in the field of dependability are similar or related to the notion of sur-
vivability. In addition, many techniques for improving dependability are related to sur-
vivability architectures. We review this related work in this section.

6.1 Related Concepts
• Dependability

Avizienis et al. argue that survivability and dependability are equivalent—“names
for an essential property” [4] although that statement was based on an earlier,
informal definition of survivability [13]. Given the extremely broad definition of
dependability, it is possible to argue that survivability is subsumed by dependabil-
ity. However, survivability meets a need not adequately addressed by the standard
definition of dependability since the latter’s breadth includes no structure and sug-
gests a single-service view. Survivability emphasizes the need to specify systems
that can provide different forms of service, each with its own complete set of
dependability requirements, under different conditions. The problem with the sin-
gle-service view is that it might not be cost effective to provide assurance of full
service across the entire spectrum of potential damage; in a survivable system, a
narrower subset of damage is selected to be addressed by the dependability
requirements. Whether survivability is seen as a facet of dependability, or a com-
posite of functional and dependability requirements, is a matter of definition. We
use it as a composite of dependability requirements, i.e., a set of specifications
each of which has its own dependability requirements in the traditional sense. This
allows the standard technical notion of dependability to remain unchanged while
adding another means of addressing informal dependability requirements on sys-
tem function.

• Graceful degradation
The general notion of graceful degradation is clearly related to survivability. One
definition, from the telecommunications industry, is: “Degradation of a system in
such a manner that it continues to operate, but provides a reduced level of service
rather than failing completely” [46]. According to this definition, survivability is a
specific form of graceful degradation where reduced levels of service are specified
and analyzed rigorously. Other perspectives on graceful degradation (e.g., Shelton
et al. [40] and Nace and Koopman [28]) choose not to assume a specific set of
alternative services, but rather determine the best possible value provided on-the-
fly based on stated utility values of available functional components. Graceful
degradation and survivability address a similar problems, but in subtly different
ways. Graceful degradation attempts to provide the maximum value possible
given a certain set of working functional components, which means it provides
fine-grained control of functionality each form of which is determined dynami-

cally. Survivability, on the other hand, supplies only prescribed functionality sac-
rifices some of graceful degradation’s postulated utility in order to provide tight
control over the analysis and certification process of software. A gracefully
degrading system is likely to degrade in steps as resources are lost, but those steps
are not necessarily determined at design time. A survivable system degrades in
explicit, tightly-controlled steps that provide predictability and the opportunity for
stronger formal analysis at the expense of some potential utility.

• Quality of service
The telecommunications industry also has a definition for quality of service: “Per-
formance specification of a communications channel or system” [46]. Quality of
service (QoS) focuses on providing the most value with available resources and,
like survivability, does this by incorporating some number of discrete functional
levels. However, the term is generally used to refer to specific aspects of a system,
for instance video quality or response time. QoS could be used by a survivable
system, but survivability typically has a much broader impact on system function,
changing the function more dramatically or replacing it altogether.

• Performability
The concept of performability is related in a limited way to survivability [26]. A
performability measure quantifies how well a system maintains parameters such as
throughput and response time in the presence of faults over a specified period of
time [27]. Thus performability is concerned with analytic models of throughput,
response time, latency, etc. that incorporate both normal operation and operation in
the presence of faults but does not include the possibility of alternative services.
Survivability is concerned primarily with system functionality, and precise state-
ments of what that functionality should be in the presence of faults.

6.2 Related Embedded Architectures
Some architectural aspects of survivable embedded systems have been discussed by
other researchers. In this section, we review two particular approaches: the simplex
architecture and safety kernels.
• Simplex architecture

The Simplex architecture of Sha et al. [39] uses a simple backup system to com-
pensate for uncertainties of a more complex primary system. The architecture
assumes analytic redundancy: that two major functional capabilities with some sig-
nificant design difference between them are used. The examples given primarily
involve control systems. A survivability architecture is similar, but: (1) takes a
more general view of possible user requirements, allowing more than two distinct
functions; (2) uses tighter component control, disallowing software replacement
(as opposed to reconfiguration) online in order to facilitate stronger analysis; and
(3) addresses the problems associated with non-independence of software failures
without requiring knowledge of completely separate methods to accomplish a goal
(which might be an unreasonable assumption in many digital systems).

• Safety Kernels
The idea of a safety kernel derives from the related concept of a security kernel.
Both are related to survivability since they have a goal of assuring that certain
important properties (safety or security) hold even if functionality has to be aban-
doned. Leveson et al. use the term safety kernel to describe a system structure
where mechanisms aimed to achieve safety are gathered together into a central-
ized location [22]. A set of fault detection and recovery policies specified for the
system is then enforced by the kernel. Subsequently, Rushby defined the role of a
safety kernel more precisely based on the maintenance of crucial properties when
certain conditions hold [34]. In a discussion about the implementation issues of
safety kernels, Wika and Knight introduced the idea of weakened properties, prop-
erties that are not checked in the kernel, but which the kernel ensures are checked
by the application [53]. Weakened properties compromise between the need for
assurance and the need for kernel simplicity. Burns and Wellings define a safety
kernel as a safe nucleus and a collection of safety services [8]. The safe nucleus
manages safety properties computing resources; the safety services check safety
and timing invariants of individual applications. The safety services evade the
problem of enforceability of only negative properties; including them means that
all computation requests of an application can be monitored to check that safety
assertions hold. Peters and Parnas [29] use the idea of a monitor that checks the
physical behavior of a system by comparing it with a specification of valid behav-
iors. They explore the imprecision in a system’s ability to detect its precise physi-
cal state and how this relates to the properties that must be checked by the
monitor. These ideas apply to the safety kernel concept as well, as there may be
some slack in safety policies or known imprecision in the physical system.

6.3 Fault-Tolerant Distributed Systems
A very wide range of faults can occur in distributed systems and fault tolerance in such
systems has been an active area of research for many years. In this section, we mention
briefly some of this research. For a more comprehensive overview, see Gartner [16]
and Jalote [17].

Cristian surveyed the issues involved in providing fault-tolerant distributed
systems [10]. He presented two requirements for a fault-tolerant system: (1) mask fail-
ures when possible; and (2) ensure clearly specified failure semantics when masking is
not possible. The majority of his work, however, dealt with the masking of failures.
Birman introduced the “process-group-based computing model” [7] and three different
systems—ISIS, Horus [48] and Ensemble [49]—that built on the concept. In a recent
system design, Astrolabe [50], Birman introduced a highly distributed hierarchical
database system that also has capabilities supporting intentionally addressed messag-
ing. By using a gossip-based communications protocol, Astrolabe organizes a hierar-
chical database of aggregated information about large-scale distributed computer
systems. A virtual collection of high-level information contains highly aggregated
information about the system as a whole, while lower level 'nodes' contain more local-
ized information about distributed sub-systems.

In the WAFT project, Marzullo and Alvisi are concerned with the construction of
fault-tolerant applications in wide-area networks [1]. The Eternal system, developed
by Melliar-Smith and Moser, is middleware that operates in a CORBA environment,
below a CORBA ORB but on top of their Totem group communication system. The
primary goal is to provide transparent fault tolerance to users [25]. Babaoglu and
Schiper are addressing problems with scaling of conventional group technology. Their
approach for providing fault tolerance in large-scale distributed systems consists of
distinguishing between different roles or levels for group membership and providing
different service guarantees to each level [5]. Finally, the CONIC system developed by
Kramer and Magee addresses dynamic configuration for distributed systems, incre-
mentally integrating and upgrading components for system evolution. The successor to
CONIC, Darwin, is a configuration language that separates program structure from
algorithmic behavior [23, 24].

Kaiser introduced KX, Kinesthetics eXtreme, an architecture supporting the distri-
bution and coordination of mobile agents to perform reconfiguration of legacy soft-
ware systems [47]. The architecture allows mobile code (or SOAP message enabled
code) to travel around a network and coordinate activities with one another through the
Workflakes distributed workflow engine, which is in turn built atop the COUGAAR
distributed blackboard system.

6.4 Intrusion-Tolerant Systems
The notion of Intrusion Tolerance emerged in the 1990’s as an approach to security in
which reliance would not be placed totally on preventing intrusion. Rather systems
would be engineered to detect intrusions and limit their effect. Intrusion tolerance is
closely related to fault tolerance for a specific type of deliberate fault, and provides a
form of survivability.

Two major projects of note in the area are OASIS and MAFTIA. For detailed dis-
cussions of intrusion tolerance, see the text by Lala [21] and the report by Powell and
Stroud [30]. For a discussion of the architectural issues, see the report by Verissimo et
al [51]. We summarize some of the major research concepts here.

Some of the research in the field of intrusion tolerance has addressed important
basic issues that can be viewed as building blocks for intrusion-tolerant systems.
Examples include communications protocols that provide important quality
guarantees [6, 31], approaches to the secure use of mobile code [3], file systems that
resist or tolerate attacks [44], software wrappers that permit legacy code to have cer-
tain important quality attributes retrofitted [15], security protocols that help ensure cer-
tain security properties [11], mechanisms for dealing with buffer overflow attacks, and
approaches to the creation of a secure certification authority [54].

As well as building blocks, experimental systems have been designed and built to
demonstrate system-level concepts and techniques. Examples include HACQIT—a
system that provides Internet services to known users through secure connections [32],
ITDOS—an intrusion-tolerant middleware system based on CORBA [35], and
SITAR—an intrusion tolerant system based on COTS servers [52].

7 Summary
The notion of survivability is emerging as an important concept in a number of areas of
computer system design. In this paper, we have explored the motivation for survivabil-
ity, how it might be used, what the concept means in a precise and testable sense, and
how it is being implemented in two very different application areas.

Making a system survivable rather than highly reliable or highly available has
many advantages including overall system simplification and reduced demands on
assurance technology. Both of these advantages contribute to the potential for building
systems and with assured operation that would otherwise be infeasible. Although ser-
vice to the user will be limited during some periods of operation for a system that is
survivable, the potential for overall cost-effective system development will often out-
weigh this limitation.

Acknowledgements
We thank Jonathan Rowanhill and Philip Varner for their significant contributions to
the design and implementation of the Willow reactive system. This work was sup-
ported in part by NASA Langley Research Center under grants numbered NAG-1-
2290 and NAG-1-02103. This work was supported in part by the Defense Advanced
Research Projects Agency under grant N66001-00-8945 (SPAWAR) and the Air Force
Research Laboratory under grant F30602-01-1-0503. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied,
of DARPA, the Air Force, or the U.S. Government.

References
[1] Alvisi, L. and K. Marzullo. “WAFT: Support for Fault-Tolerance in Wide-Area

Object Oriented Systems.” Proc. 2nd Information Survivability Workshop, IEEE
Computer Society Press, Los Alamitos, CA, October 1998.

[2] Anderson, T., and R. W. Witty. “Safe programming.” BIT 18:1-8, 1978.
[3] Appel, A. “Foundational Proof-Carrying Code.” IEEE Symposium on Logic in

Computer Science, Boston MA, 2001
[4] Avizienis, A., J. Laprie, and B. Randell. “Fundamental Concepts of Computer

System Dependability.” IARP/IEEE-RAS Workshop on Robot Dependability:
Technological Challenge of Dependable Robots in Human Environments, Seoul,
Korea, May 2001.

[5] Babaoglu, O. and A. Schiper. “On Group Communication in Large-Scale Distrib-
uted Systems.” ACM Operating Systems Review 29(1):62-67, January 1995.

[6] Backes, M. and C. Cachin. “Reliable Broadcast In A Computational Hybrid
Model With Byzantine Faults, Crashes, And Recoveries” International Confer-
ence on Dependable Systems and Networks, San Francisco CA, June 2003

[7] Birman, K. “The Process Group Approach to Reliable Distributed Computing.”
Communications of the ACM, 36(12):37-53 and 103, December 1993.

[8] Burns, A., and A. J. Wellings. “Safety Kernels: Specification and Implementa-
tion.” High Integrity Systems 1(3):287-300, 1995.

[9] Carzaniga, A., D. Rosenblum, and A. Wolf. “Achieving Scalability and Expres-
siveness in an Internet-scale Event Notification Service.” Symposium on Princi-
ples of Distributed Computing, 2000.

[10] Cristian, F. “Understanding Fault-Tolerant Distributed Systems.” Communica-
tions of the ACM 34(2):56-78, February 1991.

[11] Deswarte, Y., N. Abghour, V. Nicomette, D. Powell. “An Intrusion-Tolerant
Authorization Scheme for Internet Applications.” Sup. to Proc. 2002 International
Conference on Dependable Systems and Networks, Washington, D.C. June 2002.

[12] Deutsch, M. S., and R. R. Willis. Software Quality Engineering: A Total Technical
and Management Approach. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[13] Ellison, B., D. Fisher, R. Linger, H. Lipson, T. Longstaff, and N. Mead. “Surviv-
able Network Systems: An Emerging Discipline.” Technical Report CMU/SEI-
97-TR-013, Software Engineering Institute, Carnegie Mellon University, Novem-
ber 1997.

[14] Federal Aviation Administration Advisory Circular 25.1309-1A, “System Design
and Analysis.”

[15] Fraser, T., L. Badger, and M. Feldman. “Hardening COTS Software with Generic
Software Wrappers.” in OASIS: Foundations of Intrusion Tolerant Systems (J.
Lala Ed.), IEEE Computer Society Press, 2003.

[16] Gartner, Felix C. “Fundamentals of Fault-Tolerant Distributed Computing in
Asynchronous Environments.” ACM Computing Surveys 31(1):1-26, March 1999.

[17] Jalote, P. Fault Tolerance in Distributed Systems. Prentice Hall:Englewood Cliffs,
NJ, 1994.

[18] Knight, J., M. Elder, J. Flinn, and P. Marx. “Summaries of Four Critical Infrastruc-
ture Systems.” Technical Report CS-97-27, Department of Computer Science,
University of Virginia, November 1997.

[19] Knight, J. C., D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, P. Devanbu, and M.
Gertz. “The Willow Architecture: Comprehensive Survivability for Large-Scale
Distributed Applications.” Intrusion Tolerance Workshop, The International Con-
ference on Dependable Systems and Networks, Washington, DC, June 2002.

[20] Knight, J. C., E. A. Strunk and K. J. Sullivan. “Towards a Rigorous Definition of
Information System Survivability.” DISCEX 2003, Washington, DC, April 2003.

[21] Lala, J. “Foundations of Intrusion Tolerant Systems.” IEEE Computer Society
Press, Catalog # PR02057, 2003.

[22] Leveson, N., T. Shimeall, J. Stolzy and J. Thomas. “Design for Safe Software.”
AIAA Space Sciences Meeting, Reno, Nevada, 1983.

[23] Magee, J., N. Dulay and J. Kramer. “Structuring Parallel and Distributed Pro-
grams.” Software Engineering Journal, 8(2):73-82, March 1993.

[24] Magee, J., and J. Kramer. “Darwin: An Architectural Description Language.”
http://www-dse.doc.ic.ac.uk/research/darwin/darwin.html, 1998.

[25] Melliar-Smith, P., and L. Moser. “Surviving Network Partitioning.” IEEE Com-
puter 31(3):62-68, March 1998.

[26] Myers, J.F. “On Evaluating The Performability Of Degradable Computing Sys-
tems.” IEEE Transactions on Computers 29(8):720-731, August 1980.

[27] Myers, J.F., and W.H. Sanders. “Specification And Construction Of Performabil-
ity Models.” Proc. Second International Workshop on Performability Modeling of
Computer and Communication Systems, Mont Saint-Michel, France, June 1993.

[28] Nace, W., and P. Koopman. “A Product Family Based Approach to Graceful Deg-
radation.” DIPES 2000, Paderborn, Germany, October 2000.

[29] Peters, D. K., and D. L. Parnas. “Requirements-based Monitors for Real-time Sys-
tems.” IEEE Trans. on Software Engineering 28(2):146-158, Feb. 2002.

[30] Powell, D. and R. Stroud (Eds). “Conceptual Model and Architecture of MAF-
TIA.” http://www.newcastle.research.ec.org/maftia/deliverables/D21.pdf

[31] Ramasamy, H., P. Pandey, J. Lyons, M. Cukier, and W. Sanders. “Quantifying the
Cost of Providing Intrusion Tolerance in Group Communications.” in OASIS:
Foundations of Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer Society
Press, 2003.

[32] Reynolds, J., J. Just, E. Lawson, L. Clough, R. Maglich, and K. Levitt. “The
Design and Implementation of an Intrusion Tolerant System.” in OASIS: Founda-
tions of Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer Society Press,
2003.

[33] Rowanhill, Jonathan C., Philip E. Varner and John C. Knight. “Efficient Hierar-
chic Management For Reconfiguration of Networked Information Systems.” The
International Conference on Dependable Systems and Networks (DSN-2004),
Florence, Italy, June 2004.

[34] Rushby, J. “Kernels for Safety?” Safe and Secure Computing Systems, T. Ander-
son Ed., Blackwell Scientific Publications, 1989.

[35] Sames, D., B. Matt, B. Niebuhr, G. Tally, B. Whitmore, and D. Bakken. “Develop-
ing a Heterogeneous Intrusion Tolerant CORBA Systems.” in OASIS: Founda-
tions of Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer Society Press,
2003.

[36] Scandariato, Riccardo and John C. Knight. “An Automated Defense System to
Counter Internet Worms.” Technical Report CS-2004-12, Department of Com-
puter Science, University of Virginia, March 2004.

[37] Schlichting, R. D., and F. B. Schneider. “Fail-stop processors: An approach to
designing fault-tolerant computing systems.” ACM Transactions on Computing
Systems 1(3):222-238.

[38] Sha, L. “Using Simplicity to Control Complexity.” IEEE Software 18(4):20-28,
2001.

[39] Sha, L., R. Rajkumar and M. Gagliardi. “A Software Architecture for Dependable
and Evolvable Industrial Computing Systems.” Technical Report CMU/SEI-95-
TR-005, Software Engineering Institute, Carnegie Mellon University, 1995.

[40] Shelton, C., P. Koopman, and W. Nace. “A framework for scalable analysis and
design of system-wide graceful degradation in distributed embedded systems.”
Eighth IEEE International Workshop on Object-oriented Real-time Dependable
Systems, Guadelajara, Mexico, January 2003.

[41] Storey, N. Safety-Critical Computer Systems. Prentice Hall: Harlow, U.K., 1996.
[42] Strunk, E. The Role of Natural Language in a Software Product. M.S. Thesis, Uni-

versity of Virginia Dept. of Computer Science, May 2002.
[43] Strunk, E. A., and J. C. Knight. “Assured Reconfiguration of Embedded Real-

Time Software.” The International Conference on Dependable Systems and Net-
works (DSN-2004), Florence, Italy, June 2004.

[44] Strunk, J., G. Goodson, M. Scheinholz, C. Soules and G Ganger. “Self Securing
Storage: Protecting Data in Compromised Systems.” in OASIS: Foundations of
Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer Society Press, 2003.

[45] Sullivan, K., J. Knight, X. Du, and S. Geist. “Information Survivability Control
Systems.” Proc. 21st International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA, May 1999.

[46] U.S. Department of Commerce, National Telecommunications and Information
Administration, Institute for Telecommunications Services, Federal Std. 1037C.

[47] Valetto, G. and G. Kaiser. “Using Process Technology to Control and Coordinate
Software Adaptation.” 25th International Conference on Software Engineering.
Portland, Or. May, 2003.

[48] van Renesse, R., K. Birman, and S. Maffeis. “Horus: A Flexible Group Communi-
cations System.” Comm. of the ACM 39(4):76-83, April 1996.

[49] van Renesse, R., K. Birman, M. Hayden, A. Vaysburd, and D. Karr. “Building
Adaptive Systems Using Ensemble.” Technical Report TR97-1638, Department
of Computer Science, Cornell University, July 1997.

[50] Van Renesse, R., K. Birman and W. Vogels. “Astrolabe: A Robust and Scalable
Technology for Distributed System Monitoring, Management, and Data Mining.”
ACM Transactions on Computer Systems, Vol. 21, No. 2, pp. 164–206, May 2003.

[51] Veríssimo, P., Neves, N.F., and Correia,M. “Intrusion-Tolerant Architectures:
Concepts and Design (extended).” Technical Report DI/FCUL TR03-5, Depart-
ment of Computer Science, University of Lisboa, 2003

[52] Wang, F., F. Jou, F. Gong, C. Sargor, K. Goseva-Popstojanova, and K. Trivedi.
“SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services.” in
OASIS: Foundations of Intrusion Tolerant Systems (J. Lala Ed.), IEEE Computer
Society Press, 2003.

[53] Wika, K.J., and J.C. Knight. “On The Enforcement of Software Safety Policies.”
Proceedings of the Tenth Annual Conference on Computer Assurance (COM-
PASS), Gaithersburg, MD, 1995.

[54] Zhou, L., F. Schneider and R. Renesse. “COCA: A Secure Distributed Online Cer-
tification Authority.” in OASIS: Foundations of Intrusion Tolerant Systems (J.
Lala Ed.), IEEE Computer Society Press, 2003.

